$a=4 \cdot 769 \pm 0 \cdot 002, \quad b=7 \cdot 248 \pm 0 \cdot 003, \quad c=9 \cdot 756 \pm 0 \cdot 005 \AA$.
Straumanis' values for the iodine coefficients of expansion (Straumanis, 1943) would give

$$
\begin{gathered}
a=4 \cdot 777 \pm 0 \cdot 002, b=7 \cdot 256 \pm 0 \cdot 003, c=9 \cdot 761 \pm 0.005 \AA \\
\text { at } 16{ }^{\circ} \mathrm{C} .
\end{gathered}
$$

These may be compared with the values

$$
a=4 \cdot 7784, b=7 \cdot 2487, c=9.7704 \AA
$$

obtained by Straumanis using angles up to 84°.

I wish to express my thanks to the Australian Titan Products Pty., Ltd., for a grant which made this work possible, and to Dr G. H. Cheesman whose active interest and stimulating discussions contributed greatly to the development of this technique.

References

Cohen, M. U. (1935). Rev. Sci. Instrum. 6, 68.
Heavens, O. S. \& Cheesman, G. H. (1950). Acta Cryst. 3, 197.
Nelson, J. B. \& Riley, D. P. (1945). Proc. Phys. Soc. Lond. 57, 160.
Straumanis, M. (1943). Z. phys. Chem. B, 53, 320.

On the Bond Lengths of 1:14-Benzbisanthrene

By Md. Asgar Ali
Mathematical Institute, 10 Parks Road, Oxford, England

(Received 13 November 1958 and in revised form 22 December 1958)

Abstract

The π-bond orders of the various bonds in 1:14 benzbisanthrene are calculated by the molecularorbital method within the π-electron approximation, the molecular orbitals being formed by linear combination of atomic orbitals (l.c.a.o.m.o.). The bond lengths are obtained from the usual curves of π-bond order vs. bond length and compared with experimental values. It is found that the m.o. treatment reproduces the trends in observed bond lengths, but that there is some discrepancy between these two sets of values. The effect of introducing refinements in the calculation is discussed in the light of results obtained for simple molecules like butadiene with this refinements.

Recently Trotter (1958) has determined the bond lengths in 1:14-benzbisanthrene by X-ray diffraction. His results show that the lengths of the central bonds D, C, B, A (Fig. 1) increase markedly in that order $(\mathrm{I} \cdot 40 \rightarrow 1.44 \rightarrow 1.47 \rightarrow 1.49 \AA$) and that the shortest bond is $V(1.35 \AA)$.

Fig. 1. 1:14-Benzbisanthrene.
Trotter also carried out a simple valence-bond calculation of the bond lengths, taking into account only the thirty unexcited structures. His calculation reproduced nicely the observed trends in the bond lengths, and the calculated values are surprisingly close to the observed. Since it is known that a simple l.c.a.o.m.o. calculation neglecting overlap also predicts
the correct bond lengths in other aromatic hydrocarbons, we were interested in comparing the success of the two methods for 1:14-benzbisanthrene. Pauncz \& Berencz (1954) have calculated the π bond orders using the molecular-orbital method and have derived bond lengths. We have repeated these calculations and obtained the bond lengths from a smooth order-length curve drawn through these basic points:

	π Bond order	Bond length
Diamond corrected to		
$\quad s p^{2}$ hybridization	0	$1.50 \AA$
Graphite	0.525	1.421
Benzene	0.667	1.39
Ethylene	1.000	1.34

Our π bond orders and calculated bond lengths (which differ only slightly from those of the previous m.o. calculation) are listed in Table 1 together with the observed distances.

The figure in the third decimal place in the calculated bond lengths has no absolute significance but shows the correct order of the bonds in relation to one another. The Table shows that the trends in bond lengths are reproduced quite accurately in this cal-

Table 1. π bond orders and bond lengths

Bond	π Bond order	Calculated bond length	Observed bond length
A	0.424	$1.443 \AA$	$1.49 \AA$
B	0.489	1.427	1.47
C	0.522	1.421	1.44
D	0.717	1.381	1.40
E	0.634	1.398	1.36
F	0.532	1.419	1.43
G	0.532	1.419	1.40
H	0.551	1.415	1.41
I	0.527	1.420	1.43
J	0.534	1.418	1.42
K	0.565	1.412	1.39
L	0.633	1.399	1.43
M	0.509	1.424	1.42
N	0.496	1.426	1.44
P	0.510	1.424	1.46
Q	0.703	1.384	1.37
R	0.552	1.415	1.43
S	0.570	1.410	1.40
T	0.626	1.400	1.37
U	0.501	1.425	1.47
V	0.772	1.371	1.35
	Mean	1.412	1.418
	Root mean square error $=0.025$.		

culation also, but that their absolute values differ from the observed ones. The largest error seems to be in the length of the bond A. This is partly due to the uncertainty in the nature of the order-length curve below π bond order 0.5 and partly to the simplifying assumption that all resonance integrals are equal, which is far from being true. The root-mean-square of the differences between the calculated lengths and the observed values is $0.025 \AA$. This might be compared with that for the valence-bond calculation which is $0 \cdot 01 \AA$. The mean of our values $1.412 \AA$ compares well with the observed mean $1 \cdot 418 \AA$. Probably if we had allowed for the variation of the resonance integral with bond length, or carried out a self-consistent type of calculation as indicated by Pople (1953), assuming the orbitals calculated by the Hückel method as an approximation, we might have obtained a better agreement with observed values. Such a calculation would be very laborious and hence was not undertaken. But we could reasonably expect the same type of improvements in the results as in the case of smaller molecules like butadiene.

In butadiene, with the approximation of equal resonance integral for all the bonds, the l.c.a.o.m.o. calculation yields 0.894 and 0.447 as the π bond orders of the end bonds and the central bond. The corresponding bond orders by a self-consistent calculation
done by Pople (1953) are 0.9604 and 0.2790 . The above figures show that the change in bond order of the central bond is more than that of the end bonds. In fact, this refinement shortens the smaller bond lengths a little but lengthens the longer bond considerably. Hence, with this type of refinement, we can expect that the refined bond order of D will be slightly higher, and that of A considerably less, than the simple bond orders calculated on l.c.a.o.m.o. approximation. Hence the new bond lengths will correspond more closely to the observed values.

There is one point which might be made here. The variation of bond length along the central bonds $D \rightarrow C \rightarrow B \rightarrow A$ seems to be of quite general occurrence in this type of aromatic hydrocarbon. Such a variation also occurs in the central bonds of 1:12benzoperylene (Pauncz \& Berencz, 1953 ; 1954), which are shown below.

Fig. 2. 1:12-Benzoperylene.

Bond	π Bond order
A	0.427
B	0.519
C	0.734

These bond orders might be compared with those for similar bonds in 1:14-Benzbisanthrene.

The author would like to express his sincere thanks to Prof. C. A. Coulson, F.R.S., for suggesting this problem, and for his supervision and guidance throughout the work. The award of the Lytton Moslem Scholarship from the Government of West-Bengal, India, is also acknowledged.

References

Pauncz, R. \& Berencz, F. (1953). Acta Chim. Hungarica, 3, 261.
Pauncz, R. \& Berencz, F. (1954). Acta Chim. Hungarica, 4, 333; quoted in the Dictionary of Molecular Constants, compiled by C. A. Coulson and R. Daudel.
Pople, J. A. (1953). Trans. Faraday Soc. 49, 1375.
Trotter, J. (1958). Acta Cryst. 11, 423.

